If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4h^2+8h-16=0
a = 4; b = 8; c = -16;
Δ = b2-4ac
Δ = 82-4·4·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{5}}{2*4}=\frac{-8-8\sqrt{5}}{8} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{5}}{2*4}=\frac{-8+8\sqrt{5}}{8} $
| 8x+7-7x=4+5 | | 3.54-10.5v=-10.7v | | 0.7y+0.9=−3.8y−3.6 | | -8(4+5n)=-8n+32 | | -11p-18=-12p-16 | | 4a=-10+3a | | 3y+5+2y-7+y=180 | | 3-4d=-4d+3 | | 24x2=8x2 | | 4n^2-18n=10 | | 14m=18+15m | | 3x+10+3x-5=80 | | k=8k+7 | | -8-16k=9-16k+17k | | 1=x+9÷9 | | 36x2+49=84x | | 4u+1=-9+3u | | 2n+36=-2(n-6) | | 180=60+60+(x-20) | | 1/8x+4=5 | | 8(3x+12)=30 | | 49v^2=16 | | 60+24+w+25=180 | | |x+2|=11 | | 4q+1=-3q-9+6q | | 5.7+x=4.1 | | x2+60=20 | | -30-6n=8(n+5) | | 55=0.2x | | 7-7f=-7f+7 | | -41-(-5)=x/9 | | t-29=29 |